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Rodovia Jorge Amado, km 16, Bairro Salobrinho, CEP: 45.662-900, Ilhéus, Bahia, Brazil
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1. Introduction

It is well known that the linear Boltzmann transport operator is non–self–adjoint and the so-
lution of the adjoint transport equation can play a very useful role in the simulation of a wide
variety of nuclear engineering problems [1]. This is due to the fact that the adjoint flux can be
interpreted as an importance function that quantifies the relative contribution of neutral parti-
cles to a desired physical quantity, such as the detector response for problems in non–multiplying
media. During the last decades, the adjoint technique has been extensively applied along with
deterministic methods for discrete–ordinates (SN ) calculations. Two classes of problems have
been solved within this scope: source–detector problems and the estimation of interior neutron
source distribution [2]. Some of recent contributions are related to solving slab–geometry and
two–dimensional problems by using spectral nodal methods [2, 3, 4].

In the referenced works, for the sake of computing quantities inside the geometric domain, zero
outgoing adjoint flux has been considered as prescribed boundary conditions. This is consistent
with the concept of importance since particles leaving the domain do not contribute to the
system’s particle population. According to [1], to estimate the total leakage from the domain
given a monodirectional and monoenergetic incident beam, the homogeneous adjoint transport
equation must be solved by considering unit outgoing adjoint flux at the boundary. In this
work, we use this basic idea to calculate neutral particle leakage for energy multigroup SN
transport problems. We have used the adjoint spectral Green’s function constant–nodal (SGF†–
CN) method to numerically solve adjoint SN transport problems in X,Y –geometry [4]. We
present and discuss numerical results to a typical model problem.

2. Methodology

The adjoint problem cannot be considered independently of the forward transport problem.
Thus, the proper identification of the adjoint source and adjoint boundary conditions in addition
to the “importance” meaning of the adjoint flux make possible to determine physically significant
quantities. In source–detector problems, it can be proven [1] that the solutions to the forward
and adjoint transport problems, i. e., the neutral particle angular flux (ψ) and the adjoint
angular flux (ψ†), respectively, are related by the the reciprocity condition

⟨ψ,Q†⟩ = ⟨ψ†, Q⟩ −
∫
Γ
dΓ

∫ ∞

0
dE

∫
4π
dΩ n ·Ω ψ†(r, E,Ω)

ψ
(
r, E,Ω

)
, r ∈ Γ . (1)

In Eq. (1), the second term on the right–hand side is the bilinear concomitant, Q† is the
adjoint source, Q is the source of particles, ⟨·, ·⟩ represents the integration over the independent
variables, and Γ is the boundary surface of the domain.
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Let us now consider the homogeneous adjoint problem and unit adjoint flux in the exiting
directions all over the boundary, i. e., Q† = 0 and ψ†(r, E,Ω)

= 1, r ∈ Γ, n · Ω > 0,
respectively. Thus, Eq. (1) appears as

0 = ⟨ψ†, Q⟩ +

∫
Γ
dΓ

∫ ∞

0
dE

∫
n·Ω<0

dΩ |n ·Ω| ψ†(r, E,Ω)
ψ
(
r, E,Ω

)
−

∫
Γ
dΓ

∫ ∞

0
dE

∫
n·Ω>0

dΩ n ·Ω ψ
(
r, E,Ω

)
, r ∈ Γ .

(2)

We note at this point that the third term on the right–hand side in Eq. (2) is the total leakage
J† through the surface Γ, which can be written as

J† = ⟨ψ†, Q⟩ +

∫
Γ
dΓ

∫ ∞

0
dE

∫
n·Ω<0

dΩ |n ·Ω| ψ†(r, E,Ω)
ψ
(
r, E,Ω

)
, r ∈ Γ . (3)

2.1. The adjoint SN two–dimensional case

We consider a two–dimensional rectangular domain whereon a discretization spatial grid com-
posed of I × J homogeneous nodes di, j (hxi cm × hyj cm), i = 1 : I and j = 1 : J , is set.
Therefore, the steady–state adjoint multigroup SN transport equations with linearly anisotropic
scattering in non–multiplying media on di, j appear as

− µm
∂ψ†

mg (x, y)

∂x
− ηm

∂ψ†
mg (x, y)

∂y
+ Σi,j

Tg ψ
†
mg (x, y)

=
1

4

G∑
g′=1

M∑
n=1

[
Σ
(0) i,j
S g→g′ + 3Σ

(1) i,j
S g→g′

(
µmµn + ηmηn

) ]
ωn ψ

†
ng′ (x, y) ,

g = 1 : G , m = 1 :M , i = 1 : I , j = 1 : J , (x, y) ∈ di,j .

(4)

A thorough description of the notation used in Eq. (4) can be found in [4].

In the multigroup and the SN formulation, Eq. (3) appears as

J †
b,g =

G∑
g′=1

Qg′

NX∑
i=1

NY∑
j=1

hxi hyj
1

4

M∑
n=1

ωn ψ
† b, g
ng′ (i, j) +

I∑
i=1

hxi

G∑
g′=1

M/2∑
n=1

|ηn|ωn ψ̂
† b, g
ng′ (i, 0) fBng′

+
J∑

j=1

hyj

G∑
g′=1

3M/4∑
n=M/4

|µn|ωn ψ̃
† b, g
ng′ (Hx, j) f

R
ng′ +

I∑
i=1

hxi

G∑
g′=1

M∑
n=M/2

|ηn|ωn ψ̂
† b, g
ng′ (i,Hy) f

T
ng′

+
J∑

j=1

hyj

G∑
g′=1

[M/4∑
n=1

+
M∑

n=3M/4

]
|µn|ωn ψ̃

† b, g
ng′ (0, j) fLng′ .

(5)

Here J †
b,g is the leakage through boundary b in the energy group g; the quantities ψ̃†

ng′(x, j)

and ψ̂†
ng′(i, y) are the group average adjoint angular flux over the spatial coordinate direction y

and x within di, j , respectively; ψ
†
ng′(i, j) is the group node–average adjoint angular flux in di, j ;

and the superscript b, g indicates that the adjoint fluxes are calculated by considering boundary
conditions that consist of unit outgoing adjoint angular flux only for the energy group g on
boundary b; otherwise, it is set equal to zero. The first term of the right–hand side represents
the leakage due to a source of particles Q located in a given region discretized with a rectangular
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grid composed of NX×NY nodes. The second through the fourth terms of the right–hand side
refer to the leakage due to prescribed incident flux of particles (f) at the bottom (B), right (R),
top (T ) and left (L) boundaries, respectively.

To obtain the values of the quantities representing the adjoint flux, we solve Eq. (4) by using
the SGF†–CN method [4]. In the next section, we present the numerical results to a typical
fixed–source problem by using the adjoint technique, as described in the present work.

3. Results and Discussion

Since the accuracy of the SGF†–CN method has been thoroughly discussed in [4], in this work,
we rather present results to the leakage computation by using the adjoint technique compared to
the forward problem rather than compare the numerical results with other methods. We have
adapted a problem, first solved in [4], which consists of shielding calculations considering 10
energy groups and linearly anisotropic scattering. Figure 1 represents one–fourth of the whole
shielding structure and the macroscopic cross sections (cm−1) of each material zone (z = 1 : 3)
are listed in Table I.
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Figure 1: Geometry and material distribution.

Table I: Macroscopic cross sections (cm−1).

ΣT g,z =
(
z+20
21

)5 ( g
10 − 0.15 δ5,g − 0.15 δ10,g

)
,

g = 1 : 10

Σ
(l)
S g′→g ,z =

(
z+20
21

)( g′

100 (g−g′+1)

)(
0.7− g+g′

200

)l
,

g = 1 : 10 , g′ = 1 : g , l = 0 : 1

Now we perform the numerical experiment of estimating the leakage of neutral particles through
the right and top boundaries due to the radiation source Qg = (1.1 − 0.1 g) cm−3s−1,
g = 1 : 10, located at the center of the shielding structure as illustrated in Fig. 1, and prescribed
boundary conditions at both the right and top boundaries. For the forward boundary conditions,
we consider unit isotropic incident distributions of radiation only in the first energy group, i.e.,
fRng′ = δg,1 cm

−3s−1 and fTng′ = δg,1 cm
−3s−1. Firstly, we apply the SGF†–CN method to the

adjoint problem (4) on a coarse spatial grid composed of 100×100 nodes and the level symmetric
S8 angular quadrature set. Then, the importance maps are substituted in the corresponding
terms of Eq. (5) to estimate the group leakages.

Table II displays the results for the group leakage through the right and top boundaries (J †
R,g

and J †
T,g, respectively) due to interior and boundary sources of particles. In all cases, the results

generated by the present adjoint technique and the ones obtained from solving the forward
problem under similar conditions do agree up to the sixth decimal place. We remark that, as
can be inferred from Eq. (5), to obtain the results in Table II, for each of the 10 energy groups
individually, we solved 20 adjoint S8 problems (10 groups × 2 adjoint boundary sources). This
allows to store the importance maps and perform leakage calculations due to several sources of
particles.
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Table II: Group leakage estimation for the model problem (SGF†–CN method, spatial grid of
100× 100 nodes, S8 level symmetric model).

g = 1 g = 2 g = 5 g = 9 g = 10

Q
J †
R,g 1.353066e+00 7.086908e–02 7.192876e–03 1.217799e–03 1.192818e–03

J †
T,g 1.353066e+00 7.086908e–02 7.192876e–03 2.844500e–03 1.217799e–03

fR
J †
R,g 1.006632e–01 1.325590e–01 2.257181e–01 1.319387e–01 1.239188e–01

J †
T,g 1.523427e+00 7.119480e–01 3.040443e–01 1.502993e–01 4.763744e–02

fT
J †
R,g 1.523427e+00 7.119480e–01 3.040443e–01 4.763744e–02 3.187136e–02

J †
T,g 1.006632e–01 1.325590e–01 2.257181e–01 1.740780e–01 1.319387e–01

Total leakage J †
R,g/J

†
T,g 2.977156e+00 9.153760e–01 5.369552e–01 1.807940e–01 1.569830e–01

4. Conclusions

The numerical solution to the adjoint transport equation is used to estimate group leakage
in fixed–source problems. The methodology presented here can be applied in the context of
storage of radioactive sources and nuclear waste. Depending on the Radiation Safety Standards,
shielding structures can be properly designed to guarantee the minimum required leakage values.
We intend to apply this technique to inverse problems to estimate interior and/or boundary
sources given information about the group leakage through the boundaries of a certain shielding
structure.
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